Local transition functions of quantum Turing machines
نویسندگان
چکیده
Foundations of the notion of quantum Turing machines are investigated. According to Deutsch’s formulation, the time evolution of a quantum Turing machine is to be determined by the local transition function. In this paper, the local transition functions are characterized for fully general quantum Turing machines, including multi-tape quantum Turing machines, extending an earlier attempt due to Bernstein and Vazirani.
منابع مشابه
Quantum Turing Machines: Local Transition, Preparation, Measurement, and Halting
The Church-Turing thesis 2 states that to be computable is to be computable by a Turing machine and the modern discipline in computational complexity theory states that to be efficiently computable is to be computable by a Turing machine within polynomial steps in the length of the input data. However, Feynman pointed out that a Turing machine cannot simulate a quantum mechanical process effici...
متن کاملSome relations between quantum Turing machines and Turing machines
For quantum Turing machines we present three elements: Its components, its time evolution operator and its local transition function. The components are related with the components of deterministic Turing machines, the time evolution operator is related with the evolution of reversible Turing machines and the local transition function is related with the transition function of probabilistic and...
متن کاملSome improvements in fuzzy turing machines
In this paper, we improve some previous definitions of fuzzy-type Turing machines to obtain degrees of accepting and rejecting in a computational manner. We apply a BFS-based search method and some level’s upper bounds to propose a computational process in calculating degrees of accepting and rejecting. Next, we introduce the class of Extended Fuzzy Turing Machines equipped with indeterminacy s...
متن کاملOn the Algebraic Representation of One-Tape Deterministic Turing Machine
An algebraic representation of the Turing machines is given, where the configurations of Turing machines are represented by 4 order tensors, and the transition functions by 8 order tensors. Two types of tensor product are defined, one is to model the evolution of the Turing machines, and the other is to model the compositions of transition functions. It is shown that the two types of tensor pro...
متن کاملA Schematic Definition of Quantum Polynomial Time Computability
In the past four decades, the notion of quantum polynomial-time computability has been realized by the theoretical models of quantum Turing machines and quantum circuits. Here, we seek a third model, which is a quantum analogue of the schematic (inductive or constructive) definition of (primitive) recursive functions. For quantum functions mapping finite-dimensional Hilbert spaces to themselves...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ITA
دوره 34 شماره
صفحات -
تاریخ انتشار 2000